Overtraining Syndrome (OTS) and Relative Energy Deficiency in Sport (RED-S): Shared Pathways, Symptoms and Complexities

Stellingwerff, T. et al. Overtraining Syndrome (OTS) and Relative Energy Deficiency in Sport (RED-S): Shared Pathways, Symptoms and Complexities. Sports Med 1–30 (2021).

Abstract

The symptom similarities between training-overload (with or without an Overtraining Syndrome (OTS) diagnosis) and Relative Energy Deficiency in Sport (RED-S) are significant, with both initiating from a hypothalamic–pituitary origin, that can be influenced by low carbohydrate (CHO) and energy availability (EA). In this narrative review we wish to showcase that many of the negative outcomes of training-overload (with, or without an OTS diagnosis) may be primarily due to misdiagnosed under-fueling, or RED-S, via low EA and/or low CHO availability. Accordingly, we undertook an analysis of training-overload/OTS type studies that have also collected and analyzed for energy intake (EI), CHO, exercise energy expenditure (EEE) and/or EA. Eighteen of the 21 studies (86%) that met our criteria showed indications of an EA decrease or difference between two cohorts within a given study (n = 14 studies) or CHO availability decrease (n = 4 studies) during the training-overload/OTS period, resulting in both training-overload/OTS and RED-S symptom outcomes compared to control conditions. Furthermore, we demonstrate significantly similar symptom overlaps across much of the OTS (n = 57 studies) and RED-S/Female Athlete Triad (n = 88 studies) literature. It is important to note that the prevention of under-recovery is multi-factorial, but many aspects are based around EA and CHO availability. Herein we have demonstrated that OTS and RED-S have many shared pathways, symptoms, and diagnostic complexities. Substantial attention is required to increase the knowledge and awareness of RED-S, and to enhance the diagnostic accuracy of both OTS and RED-S, to allow clinicians to more accurately exclude LEA/RED-S from OTS diagnoses